Конспект лекций
1 1 1 1 1 1 1 1 1 1 Рейтинг 4.75 (6 Голоса)

Виды матриц

Матрицей размерности называется таблица чисел , содержащая строк и столбцов. Числа называются элементами этой матрицы, где – номер строки, – номер столбца, на пересечении которых стоит данный элемент. Матрица, содержащая строк и столбцов, имеет вид: .

Виды матриц:

1) при квадратная, причем называют порядком матрицы;

2) квадратная матрица, у которой все недиагональные элементы равны нулю

диагональная;

3) диагональная матрица, у которой все диагональные элементы равны

единице – единичная и обозначается ;

4) при прямоугольная;

5) при – матрица-строка (вектор-строка);

6) при – матрица-столбец (вектор-столбец);

7) при всех – нулевая матрица.

Заметим, что основной числовой характеристикой квадратной матрицы является ее определитель. Определитель, соответствующий матрице -го порядка, также имеет -ый порядок.

Дадим ряд необходимых определений.

Определителем матрицы 1-го порядка называется число .

Определителем матрицы 2-го порядка называется число . (1.1)

Определителем матрицы 3-го порядка называется число . (1.2)

Приведем необходимые для дальнейшего изложения определения.

Минором Мijэлемента аij матрицы n-гопорядка А называется определитель матрицы (n-1)-гопорядка, полученной из матрицы А путем вычеркивания i-ой строки и j-го столбца.

Алгебраическим дополнением Аijэлемента аij матрицы n-гопорядка А называется минор этого элемента, взятый со знаком .

Сформулируем основные свойства определителей, присущие определителям всех порядков и упрощающие их вычисление.

1.  При транспонировании матрицы ее определитель не меняется.

2.  При перестановке двух строк (столбцов) матрицы ее определитель меняет знак.

3.  Определитель, имеющий две пропорциональные (равные) строки (столбца), равен нулю.

4.  Общий множитель элементов какой-либо строки (столбца) определителя можно вынести за знак определителя.

5.  Если элементы какой-либо строки (столбца) определителя представляют собой сумму двух слагаемых, то определитель может быть разложен на сумму двух соответствующих определителей.

6.  Определитель не изменится, если к элементам любой его строки (столбца) прибавить соответствующие элементы другой его строки (столбца), предварительно умноженные на любое число.

7. Определитель матрицы равен сумме произведений элементов любой его строки (столбца) на алгебраические дополнения этих элементов.

Поясним данное свойство на примере определителя 3-го порядка. В данном случае свойство 7 означает, что – разложение определителя по элементам 1-ой строки. Заметим, что для разложения выбирают ту строку (столбец), где есть нулевые элементы, так как соответствующие им слагаемые в разложении обращаются в ноль.

Свойство 7 представляет собой теорему о разложении определителя, сформулированную Лапласом.

8. Сумма произведений элементов какой-либо строки (столбца) определителя на алгебраические дополнения соответствующих элементов другой его строки (столбца) равна нулю.

Последнее свойство часто называют псевдоразложением определителя.

Вопросы для самопроверки.

1.  Что называется матрицей?

2.  Какая матрица называется квадратной? Что понимается под ее порядком?

3.  Какая матрица называется диагональной, единичной?

4.  Какая матрица называется матрицей-строкой и матрицей-столбцом?

5.  Что является основной числовой характеристикой квадратной матрицы?

6.  Какое число называется определителем 1-го, 2-го и 3-го порядка?

7.  Что называется минором и алгебраическим дополнением элемента матрицы?

8.  Каковы основные свойства определителей?

9.  С помощью какого свойства можно вычислить определитель любого порядка?

Действия над матрицами (схема 2)

На множестве матриц определен ряд операций, основными среди которых являются следующие:

1) транспонирование – замена строк матрицы на столбцы, а столбцов на строки;

2) умножение матрицы на число производится поэлементно, то есть , где , ;

3) сложение матриц, определенное только для матриц одной размерности;

4) умножение двух матриц, определенное только для согласованных матриц.

Суммой (разностью) двух матриц называется такая результирующая матрица, каждый элемент которой равен сумме (разности) соответствующих элементов матриц-слагаемых.

Две матрицы называются согласованными, если количество столбцов первой из них равно количеству строк другой. Произведением двух согласованных матриц и называется такая результирующая матрица , что , (1.4)

где , . Отсюда следует, что элемент -ой строки и -го столбца матрицы равен сумме попарных произведений элементов -ой строки матрицы на элементы -го столбца матрицы .

Произведение матриц не коммутативно, то есть А . В В . А. Исключение составляет, например, произведение квадратных матриц на единичную А . Е = Е . А.

Пример 1.1. Перемножить матрицы A и B, если:

.

Решение. Так как матрицы согласованные (количество столбцов матрицы равно количеству строк матрицы ), то воспользуемся формулой (1.4):

Вопросы для самопроверки.

1.  Какие действия осуществляются над матрицами?

2.  Что называется суммой (разностью) двух матриц?

3.  Что называется произведением двух матриц?

Метод Крамера решения квадратных систем линейных алгебраических уравнений (схема 3)

Дадим ряд необходимых определений.

Система линейных уравнений называется неоднородной, если хотя бы один ее свободный член отличен от нуля, и однородной, если все ее свободные члены равны нулю.

Решением системы уравнений называется упорядоченный набор чисел, который, будучи подставленным вместо переменных в систему, обращает каждое ее уравнение в тождество.

Система уравнений называется совместной, если она имеет хотя бы одно решение, и несовместной, если она решений не имеет.

Совместная система уравнений называется определенной, если она имеет единственное решение, и неопределенной, если она имеет более одного решения.

Рассмотрим неоднородную квадратную систему линейных алгебраических уравнений, имеющую следующий общий вид:

. (1.5) Главной матрицей системы линейных алгебраических уравнений называется матрица, составленная из коэффициентов, стоящих при неизвестных: .

Определитель главной матрицы системы называется главным определителем и обозначается .

Вспомогательный определитель получается из главного определителя путем замены -го столбца на столбец свободных членов.

Теорема 1.1 (теорема Крамера). Если главный определитель квадратной системы линейных алгебраических уравнений отличен от нуля, то система имеет единственное решение, вычисляемое по формулам:

(1.6)

Если главный определитель , то система либо имеет бесконечное множество решений (при всех нулевых вспомогательных определителях), либо вообще решения не имеет (при отличии от нуля хотя бы одного из вспомогательных определителей)

В свете приведенных выше определений теорема Крамера может быть сформулирована иначе: если главный определитель системы линейных алгебраических уравнений отличен от нуля, то система является совместной определенной и при этом ; если главный определитель нулевой, то система является либо совместной неопределенной (при всех ), либо несовместной (при отличии хотя бы одного из от нуля).

После этого следует провести проверку полученного решения.

Пример 1.2. Решить систему методом Крамера

Решение. Так как главный определитель системы

отличен от нуля, то система имеет единственное решение. Вычислим вспомогательные определители

Воспользуемся формулами Крамера (1.6): , ,

Вопросы для самопроверки.

1.  Что называется решением системы уравнений?

2.  Какая система уравнений называется совместной, несовместной?

3.  Какая система уравнений называется определенной, неопределенной?

4.  Какая матрица системы уравнений называется главной?

5.  Как вычислить вспомогательные определители системы линейных алгебраических уравнений?

6.  В чем состоит суть метода Крамера решения систем линейных алгебраических уравнений?

7.  Какой может быть система линейных алгебраических уравнений, если ее главный определитель равен нулю?

Решение квадратных систем линейных алгебраических уравнений методом обратной матрицы (схема 4)

Матрица, имеющая отличный от нуля определитель, называется невырожденной; имеющая определитель равный нулю – вырожденной.

Матрица называется обратной для заданной квадратной матрицы , если при умножении матрицы на обратную ей как справа, так и слева, получается единичная матрица, то есть . (1.7)

Заметим, что в данном случае произведение матриц и коммутативно.

Теорема 1.2. Необходимым и достаточным условием существования обратной матрицы для заданной квадратной матрицы, является отличие от нуля определителя заданной матрицы

Если главная матрица системы оказалась при проверке вырожденной, то для нее не существует обратной, и рассматриваемый метод применить нельзя.

Если главная матрица невырожденная, то есть определитель 0, то для нее можно найти обратную матрицу по следующему алгоритму.

1. Вычислить алгебраические дополнения всех элементов матрицы .

2. Выписать найденные алгебраические дополнения в матрицу транспонированно.

3. Составить обратную матрицу по формуле: (1.8)

4. Сделать проверку правильности найденной матрицы А-1 согласно формуле (1.7). Заметим, что данная проверка может быть включена в итоговую проверку самого решения системы.

Система (1.5) линейных алгебраических уравнений может быть представлена в виде матричного уравнения: , где – главная матрица системы, – столбец неизвестных, – столбец свободных членов. Умножим это уравнение слева на обратную матрицу , получим:

. Так как по определению обратной матрицы , то уравнение принимает вид или . (1.9)

Таким образом, чтобы решить квадратную систему линейных алгебраических уравнений нужно столбец свободных членов умножить слева на матрицу, обратную для главной матрицы системы. После этого следует сделать проверку полученного решения.

Пример 1.3. Решить систему методом обратной матрицы

Решение. Вычислим главный определитель системы

. Следовательно, матрица невырожденная и обратная к ней матрица существует.

Найдём алгебраические дополнения всех элементов главной матрицы :

Запишем алгебраические дополнения транспонированно в матрицу

. Воспользуемся формулами (1.8) и (1.9) для нахождения решения системы

. Отсюда

Вопросы для самопроверки.

1.  Какая матрица называется вырожденной, невырожденной?

2.  Какая матрица называется обратной для заданной? Каково условие ее существования?

3.  Каков алгоритм нахождения обратной матрицы для заданной?

4.  Какому матричному уравнению эквивалентна система линейных алгебраических уравнений?

5.  Как решить систему линейных алгебраических уравнений с помощью обратной матрицы для главной матрицы системы?

Исследование неоднородных систем линейных алгебраических уравнений (схема 5)

Исследование любой системы линейных алгебраических уравнений начинается с преобразования ее расширенной матрицы методом Гаусса. Пусть размерность главной матрицы системы равна .

Матрица называется расширенной матрицей системы, если наряду с коэффициентами при неизвестных, она содержит столбец свободных членов. Следовательно, размерность равна .

Метод Гаусса основан на элементарных преобразованиях, к которым относятся:

– перестановка строк матрицы;

– умножение строк матрицы на отличное от руля число;

– поэлементное сложение строк матрицы;

– вычеркивание нулевой строки;

– транспонирование матрицы (в этом случае преобразования производятся по столбцам).

Элементарные преобразования приводят первоначальную систему к системе, ей эквивалентной. Системы называются эквивалентными, если они имеют одно и то же множество решений.

Рангом матрицы называется наивысший порядок отличных от нуля ее миноров. Элементарные преобразования ранга матрицы не меняют.

На вопрос о наличии решений у неоднородной системы линейных уравнений отвечает следующая теорема.

Теорема 1.3 (теорема Кронекера-Капелли). Неоднородная система линейных алгебраических уравнений совместна тогда и только тогда, когда ранг расширенной матрицы системы равен рангу ее главной матрицы, т. е.

Обозначим количество строк, оставшихся в матрице после метода Гаусса, через (соответственно, в системе остается уравнений). Эти строки матрицы называются базисными.

Если , то система имеет единственное решение (является совместной определенной), ее матрица элементарными преобразованиями приводится к треугольному виду. Такую систему можно решить методом Крамера, с помощью обратной матрицы или универсальным методом Гаусса.

Если (количество переменных в системе больше чем уравнений), матрица элементарными преобразованиями приводится к ступенчатому виду. Такая система имеет множество решений и является совместной неопределенной. В данном случае для нахождения решений системы необходимо выполнить ряд операций.

1.  Оставить в левых частях уравнений системы неизвестных (базисные переменные), остальные неизвестных перенести в правые части (свободные переменные). После разделения переменных на базисные и свободные система принимает вид:

. (1.10)

2.  Из коэффициентов при базисных переменных составить минор (базисный минор), который должен быть отличен от нуля.

3.  Если базисный минор системы (1.10) равен нулю, то одну из базисных переменных заменить на свободную; полученный базисный минор проверить на отличность от нуля.

4.  Применяя формулы (1.6) метода Крамера, считая правые части уравнений их свободными членами, найти выражение базисных переменных через свободные в общем виде. Полученный при этом упорядоченный набор переменных системы является ее общим решением.

5.  Придавая свободным переменным в (1.10) произвольные значения, вычислить соответствующие значения базисных переменных. Получаемый при этом упорядоченный набор значений всех переменных называется частным решением системы, соответствующим данным значениям свободных переменных. Система имеет бесконечное множество частных решений.

6.  Получить базисное решение системы – частное решение, получаемое при нулевых значениях свободных переменных.

Заметим, что количество базисных наборов переменных системы (1.10) равно числу сочетаний из элементов по элементов . Так как каждому базисному набору переменных соответствует свое базисное решение, следовательно, базисных решений у системы также .

Однородная система уравнений всегда совместна, так как имеет хотя бы одно – нулевое (тривиальное) решение. Для того чтобы однородная система линейных уравнений с переменными имела ненулевые решения, необходимо и достаточно, чтобы ее главный определитель был равен нулю. Это означает, что ранг ее главной матрицы меньше числа неизвестных . В этом случае исследование однородной системы уравнений на общее и частные решения проводится аналогично исследованию неоднородной системы. Решения однородной системы уравнений обладают важным свойством: если известны два различных решения однородной системы линейных уравнений, то их линейная комбинация также является решением этой системы. Нетрудно убедиться в справедливости следующей теоремы.

Теорема 1.4. Общее решение неоднородной системы уравнений представляет собой сумму общего решения соответствующей однородной системы и некоторого частного решения неоднородной системы уравнений

Пример 1.4.

Исследовать заданную систему и найти одно частное решение:

Решение. Выпишем расширенную матрицу системы и применим к ней элементарные преобразования:

. Так как и , то по теореме 1.3 (Кронекера-Капелли) заданная система линейных алгебраических уравнений совместна. Количество переменных , т. е. , значит, система является неопределённой. Количество базисных наборов переменных системы равно

. Следовательно, базисными могут быть 6 комплектов переменных: . Рассмотрим один из них . Тогда систему, полученную в результате метода Гаусса, можно переписать в виде

. Главный определитель . С помощью метода Крамера ищем общее решение системы. Вспомогательные определители

По формулам (1.6) имеем

. Данное выражение базисных переменных через свободные представляет собой общее решение системы:

.

При конкретных значениях свободных переменных из общего решения получаем частное решение системы. Например, частное решение соответствует значениям свободных переменных . При получаем базисное решение системы

Вопросы для самопроверки.

1.  Какая система уравнений называется однородной, неоднородной?

2.  Какая матрица называется расширенной?

3.  Перечислите основные элементарные преобразования матриц. Какой метод решения систем линейных уравнений основан на этих преобразованиях?

4.  Что называется рангом матрицы? Каким способом можно его вычислить?

5.  О чем говорит теорема Кронекера-Капелли?

6.  К какому виду может быть приведена система линейных алгебраических уравнений в результате ее решения методом Гаусса? Что это означает?

7.  Какие строки матрицы называются базисными?

8.  Какие переменные системы называются базисными, какие свободными?

9.  Какое решение неоднородной системы называется частным?

10.Какое ее решение называется базисным? Сколько базисных решений имеет неоднородная система линейных уравнений?

11.Какое решение неоднородной системы линейных алгебраических уравнений называется общим? Сформулируйте теорему об общем решении неоднородной системы уравнений.

12.  Каковы основные свойства решений однородной системы линейных алгебраических уравнений?

Виды матриц - 4.7 out of 5 based on 6 votes

Добавить комментарий


Защитный код
Обновить